
51

8. Common Questions

Where can I get those header files?
If you don't have them on your system already, you probably don't need them. Check the manual for

your particular platform. If you're building for Windows, you only need to #include <winsock.h>.

What do I do when bind() reports “Address already in use”?
You have to use setsockopt() with the SO_REUSEADDR option on the listening socket. Check out

the section on bind() and the section on select() for an example.

How do I get a list of open sockets on the system?
Use the netstat. Check the man page for full details, but you should get some good output just

typing:
$ netstat

The only trick is determining which socket is associated with which program. :-)

How can I view the routing table?
Run the route command (in /sbin on most Linuxes) or the command netstat -r.

How can I run the client and server programs if I only have one computer? Don't I need a network
to write network programs?

Fortunately for you, virtually all machines implement a loopback network “device” that sits in the
kernel and pretends to be a network card. (This is the interface listed as “lo” in the routing table.)

Pretend you're logged into a machine named “goat”. Run the client in one window and the server
in another. Or start the server in the background (“server &”) and run the client in the same window. The
upshot of the loopback device is that you can either client goat or client localhost (since “localhost”
is likely defined in your /etc/hosts file) and you'll have the client talking to the server without a
network!

In short, no changes are necessary to any of the code to make it run on a single non-networked
machine! Huzzah!

How can I tell if the remote side has closed connection?
You can tell because recv() will return 0.

How do I implement a “ping” utility? What is ICMP? Where can I find out more about raw
sockets and SOCK_RAW?

All your raw sockets questions will be answered in W. Richard Stevens' UNIX Network
Programming books. Also, look in the ping/ subdirectory in Stevens' UNIX Network Programming
source code, available online37.

How do I change or shorten the timeout on a call to connect()?
Instead of giving you exactly the same answer that W. Richard Stevens would give you, I'll just refer

you to lib/connect_nonb.c in the UNIX Network Programming source code38.
The gist of it is that you make a socket descriptor with socket(), set it to non-blocking, call

connect(), and if all goes well connect() will return -1 immediately and errno will be set to
EINPROGRESS. Then you call select() with whatever timeout you want, passing the socket descriptor
in both the read and write sets. If it doesn't timeout, it means the connect() call completed. At this
point, you'll have to use getsockopt() with the SO_ERROR option to get the return value from the
connect() call, which should be zero if there was no error.

37. http://www.unpbook.com/src.html
38. http://www.unpbook.com/src.html

http://www.unpbook.com/src.html
http://www.unpbook.com/src.html

Beej's Guide to Network Programming 52

Finally, you'll probably want to set the socket back to be blocking again before you start transferring
data over it.

Notice that this has the added benefit of allowing your program to do something else while it's
connecting, too. You could, for example, set the timeout to something low, like 500 ms, and update an
indicator onscreen each timeout, then call select() again. When you've called select() and timed-
out, say, 20 times, you'll know it's time to give up on the connection.

Like I said, check out Stevens' source for a perfectly excellent example.

How do I build for Windows?
First, delete Windows and install Linux or BSD. };-). No, actually, just see the section on building

for Windows in the introduction.

How do I build for Solaris/SunOS? I keep getting linker errors when I try to compile!
The linker errors happen because Sun boxes don't automatically compile in the socket libraries. See

the section on building for Solaris/SunOS in the introduction for an example of how to do this.

Why does select() keep falling out on a signal?
Signals tend to cause blocked system calls to return -1 with errno set to EINTR. When you set up

a signal handler with sigaction(), you can set the flag SA_RESTART, which is supposed to restart the
system call after it was interrupted.

Naturally, this doesn't always work.
My favorite solution to this involves a goto statement. You know this irritates your professors to no

end, so go for it!
select_restart:
if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
 if (errno == EINTR) {
 // some signal just interrupted us, so restart
 goto select_restart;
 }
 // handle the real error here:
 perror("select");
}

Sure, you don't need to use goto in this case; you can use other structures to control it. But I think
the goto statement is actually cleaner.

How can I implement a timeout on a call to recv()?
Use select()! It allows you to specify a timeout parameter for socket descriptors that you're

looking to read from. Or, you could wrap the entire functionality in a single function, like this:
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

int recvtimeout(int s, char *buf, int len, int timeout)
{
 fd_set fds;
 int n;
 struct timeval tv;

 // set up the file descriptor set
 FD_ZERO(&fds);
 FD_SET(s, &fds);

 // set up the struct timeval for the timeout
 tv.tv_sec = timeout;
 tv.tv_usec = 0;

 // wait until timeout or data received

Beej's Guide to Network Programming 53

 n = select(s+1, &fds, NULL, NULL, &tv);
 if (n == 0) return -2; // timeout!
 if (n == -1) return -1; // error

 // data must be here, so do a normal recv()
 return recv(s, buf, len, 0);
}
.
.
.
// Sample call to recvtimeout():
n = recvtimeout(s, buf, sizeof buf, 10); // 10 second timeout

if (n == -1) {
 // error occurred
 perror("recvtimeout");
}
else if (n == -2) {
 // timeout occurred
} else {
 // got some data in buf
}
.
.
.

Notice that recvtimeout() returns -2 in case of a timeout. Why not return 0? Well, if you recall,
a return value of 0 on a call to recv() means that the remote side closed the connection. So that return
value is already spoken for, and -1 means “error”, so I chose -2 as my timeout indicator.

How do I encrypt or compress the data before sending it through the socket?
One easy way to do encryption is to use SSL (secure sockets layer), but that's beyond the scope of

this guide. (Check out the OpenSSL project39 for more info.)
But assuming you want to plug in or implement your own compressor or encryption system, it's just

a matter of thinking of your data as running through a sequence of steps between both ends. Each step
changes the data in some way.

1. server reads data from file (or wherever)

2. server encrypts/compresses data (you add this part)

3. server send()s encrypted data

Now the other way around:

1. client recv()s encrypted data

2. client decrypts/decompresses data (you add this part)

3. client writes data to file (or wherever)

If you're going to compress and encrypt, just remember to compress first. :-)
Just as long as the client properly undoes what the server does, the data will be fine in the end no

matter how many intermediate steps you add.
So all you need to do to use my code is to find the place between where the data is read and the data

is sent (using send()) over the network, and stick some code in there that does the encryption.

What is this “PF_INET” I keep seeing? Is it related to AF_INET?
Yes, yes it is. See the section on socket() for details.

39. http://www.openssl.org/

http://www.openssl.org/

Beej's Guide to Network Programming 54

How can I write a server that accepts shell commands from a client and executes them?
For simplicity, lets say the client connect()s, send()s, and close()s the connection (that is,

there are no subsequent system calls without the client connecting again.)
The process the client follows is this:

1. connect() to server

2. send(“/sbin/ls > /tmp/client.out”)

3. close() the connection

Meanwhile, the server is handling the data and executing it:

1. accept() the connection from the client

2. recv(str) the command string

3. close() the connection

4. system(str) to run the command

Beware! Having the server execute what the client says is like giving remote shell access and people
can do things to your account when they connect to the server. For instance, in the above example, what
if the client sends “rm -rf ~”? It deletes everything in your account, that's what!

So you get wise, and you prevent the client from using any except for a couple utilities that you
know are safe, like the foobar utility:
if (!strncmp(str, "foobar", 6)) {
 sprintf(sysstr, "%s > /tmp/server.out", str);
 system(sysstr);
}

But you're still unsafe, unfortunately: what if the client enters “foobar; rm -rf ~”? The safest
thing to do is to write a little routine that puts an escape (“\”) character in front of all non-alphanumeric
characters (including spaces, if appropriate) in the arguments for the command.

As you can see, security is a pretty big issue when the server starts executing things the client sends.

I'm sending a slew of data, but when I recv(), it only receives 536 bytes or 1460 bytes at a time.
But if I run it on my local machine, it receives all the data at the same time. What's going on?

You're hitting the MTU—the maximum size the physical medium can handle. On the local machine,
you're using the loopback device which can handle 8K or more no problem. But on Ethernet, which can
only handle 1500 bytes with a header, you hit that limit. Over a modem, with 576 MTU (again, with
header), you hit the even lower limit.

You have to make sure all the data is being sent, first of all. (See the sendall() function
implementation for details.) Once you're sure of that, then you need to call recv() in a loop until all
your data is read.

Read the section Son of Data Encapsulation for details on receiving complete packets of data using
multiple calls to recv().

I'm on a Windows box and I don't have the fork() system call or any kind of struct sigaction.
What to do?

If they're anywhere, they'll be in POSIX libraries that may have shipped with your compiler. Since I
don't have a Windows box, I really can't tell you the answer, but I seem to remember that Microsoft has a
POSIX compatibility layer and that's where fork() would be. (And maybe even sigaction.)

Search the help that came with VC++ for “fork” or “POSIX” and see if it gives you any clues.
If that doesn't work at all, ditch the fork()/sigaction stuff and replace it with the Win32

equivalent: CreateProcess(). I don't know how to use CreateProcess()—it takes a bazillion
arguments, but it should be covered in the docs that came with VC++.

Beej's Guide to Network Programming 55

I'm behind a firewall—how do I let people outside the firewall know my IP address so they can
connect to my machine?

Unfortunately, the purpose of a firewall is to prevent people outside the firewall from connecting to
machines inside the firewall, so allowing them to do so is basically considered a breach of security.

This isn't to say that all is lost. For one thing, you can still often connect() through the firewall if
it's doing some kind of masquerading or NAT or something like that. Just design your programs so that
you're always the one initiating the connection, and you'll be fine.

If that's not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that people can
connect to you. The firewall can forward to you either through it's NAT software, or through a proxy or
something like that.

Be aware that a hole in the firewall is nothing to be taken lightly. You have to make sure you don't
give bad people access to the internal network; if you're a beginner, it's a lot harder to make software
secure than you might imagine.

Don't make your sysadmin mad at me. ;-)

How do I write a packet sniffer? How do I put my Ethernet interface into promiscuous mode?
For those not in the know, when a network card is in “promiscuous mode”, it will forward ALL

packets to the operating system, not just those that were addressed to this particular machine. (We're
talking Ethernet-layer addresses here, not IP addresses--but since ethernet is lower-layer than IP, all IP
addresses are effectively forwarded as well. See the section Low Level Nonsense and Network Theory
for more info.)

This is the basis for how a packet sniffer works. It puts the interface into promiscuous mode, then
the OS gets every single packet that goes by on the wire. You'll have a socket of some type that you can
read this data from.

Unfortunately, the answer to the question varies depending on the platform, but if you Google for,
for instance, “windows promiscuous ioctl” you'll probably get somewhere. There's what looks like a
decent writeup in Linux Journal40, as well.

How can I set a custom timeout value for a TCP or UDP socket?
It depends on your system. You might search the net for SO_RCVTIMEO and SO_SNDTIMEO (for use

with setsockopt()) to see if your system supports such functionality.
The Linux man page suggests using alarm() or setitimer() as a substitute.

How can I tell which ports are available to use? Is there a list of “official” port numbers?
Usually this isn't an issue. If you're writing, say, a web server, then it's a good idea to use the well-

known port 80 for your software. If you're writing just your own specialized server, then choose a port at
random (but greater than 1023) and give it a try.

If the port is already in use, you'll get an “Address already in use” error when you try to bind().
Choose another port. (It's a good idea to allow the user of your software to specify an alternate port either
with a config file or a command line switch.)

There is a list of official port numbers41 maintained by the Internet Assigned Numbers Authority
(IANA). Just because something (over 1023) is in that list doesn't mean you can't use the port. For
instance, Id Software's DOOM uses the same port as “mdqs”, whatever that is. All that matters is that no
one else on the same machine is using that port when you want to use it.

40. http://interactive.linuxjournal.com/article/4659
41. http://www.iana.org/assignments/port-numbers

http://interactive.linuxjournal.com/article/4659
http://interactive.linuxjournal.com/article/4659
http://www.iana.org/assignments/port-numbers

